AD=A100 776

ROCKWELL INTERNATIONAL ANAHEIM CA F/6 5/8

PROGRAMMABLE IMAGE PROCESSING ELEMENT. (U}

FEB 81 S A WHITE F33615=-79~C~190%
UNCLASSIFIED C€80-702/501 AFWAL~TR-80-1208 NL

: (e
i ‘ T
x Do
- ©
- ' <
r—(
| =<
T
<
B
¥ S
"z‘
¥ —
" D
L5 =

-

o~

- T

AFWAL-TR-80-1208

PROGRAMMABLE IMAGE PROCESSING ELEMENT

ROCKWELL INTERNATIONAL : C
3370 MIRALOMA AVENUE ‘
ANAHEIM, CA 92803 c‘\'E

FEBRUARY, 1981 E

TECHNICAL REPORT AFWAL-TR-80-1208
Final Report for period September 1979 — September 1980

Approved for public release; distribution unlimited.

AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

taa Dl o a L ads g
(R4 -

NOTICE

When Government drawings, spe-ifications, or other data are used for
any purpose other than in connection with a definitely related Government
procurement operation, the United States Government thereby incurs no
responsibility nor any obligation whatsoever; and the fact that the
government may have formulated, furnished, or in any way supplied the
said drawings, specifications, or other data, is not to be regarded by
implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to
manufacture, use, or sell any patented invention that may in any way
be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA)
and is releasable to the National Technical Information Service (NTIS).
At ?TIS, it will be available to the general public, including foreign
nations.

This technical report has been re :iewed and is approved for publication.

Lt £

ROBERT E. CONKLIN,
PROJECT ENGINEER CHIEF, PROCESSOR

FOR THE COMMANDER TECHNOLOGY GROUP

Doaga
o

STANLEY [E. WAGNXR, CHIEF
MICROELECTRONICS BRANCH
ELECTRONIC TECHNOLOGY DIVISION

"If your address has changed, if you wish to be removed from our
mailing 1ist, or 1f the addressee is no longer employed by your organiza-
tion please notify AFWAL /AADE-1 » W-PAFB, OH 45433
to help us maintain a current mailing T{st".

Copies of this report should not be returned unless return is required
by security considerations, contractual obligations, or notice on a
specific document.

AIR FORCE/56780/17 June 1981 — 80

9, *
G

i

T AP g e T e

]

/
\’/ AFWALLTR-80- 1zoe~/’

SECURITY CL ASS'FICATION OF THIS PAGE (Whan Data Entered)

oy REPORT DOCUMENTATION PAGE
T. nvcﬂ&' T T2 GOVT ACCESSICN NO.

4. TITLE (and Subtitle)

A PROGRAMMABLE IMAGE PROCESSING ELEMENT .

READ INSTRUCTIONS

BEFCRL COMPLETING FORM

3 PFCI®'FMT'S CATAL NG NUMBER

_AD A100 76

PN
;

5 T\F E-;;#";:X o
© 777/ Final Eeport'

| Septz=2%879 — Sept=li80 .
TE-—PERFORMING OO, EPORY NUMBER
|14 C806-703/501 !
7. AUTHOR(s) - - T e TARACT OGN GRANT NUMBER/ S]
Stan]ey A. /Nhite i F33615-79-C-1905
_ - j
9. PER/ORMING ORGANIZATION NAME AND ADDRESS :-T”.Tﬁ"::2;6327;5?:‘,—5?&":9;{_%;_—“”5;"4
Rockwell International _ b f N
3370 Miraloma Avenue R A Y 603§ 30107
Anaheim, CA 92803 et T

11. CONTROLLING OFFICE NAME AND ADDRESS

Avionics Laboratory (AFWAL/AADE)

Air Force Wright Aeronautical Laboratories (AFSC)
Wright-Patterson AFB, Ohio 45433

REPORE LDATE .-

'/7-Februl#y 1981

59

73, NJueER v PAGES

14, MONITORING AGENCY NAME & ADORESS(if different from Controlling Office)

15. SECURITY CLASS. (of this report)

Unclassified

—1

T5a. DECL ASSIFIZATION DOWNGRADING _
SCHEDULE

=

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT fof the abstract entered in Block 20, if different from Report)

18 SUPPLEMENTARY NOTES

Ch1cago

I17., April 198].
itai'pr

le 1

vector mu1t1p11er sliding window
inner product transversal filter
\ Peled-Liu mechanization multiply/accumulate
' distributed arithmetic
W Y AB%TRACY (Continua on reverse ride If necessary and identify by black number) N "

Parts of section 3 to be published, "An Architecture for a High-Speed Digital
Signal Processing Device," IEEE International Symposium on Circuits and Systems,
Parts of section % to be pub}ished

ference on

qp=pnn

The generic signal-processing equations were analyzed and two specific architec-
tures were evolved for the efficient implementation of these equations. The

first architecture which was considered consisted of a set for four arithmetic
sections. Each section was capable of combining a pair of 4-element vectors, 16
bits per element, using distributed arithmetic. The second archit

, . ,,_____ssxuntngéisn_L__;L
was pursued which consisted of a single arithmetic section? to produce the inner

product y = g a x every 90 ns using a modified Peled-Liu algorithm,

(Over)

"An Architecture

DD , 23", 1473 eoimion oF 1 NOV 65 15 OBSOLETE

SECURITY C{ ASGITICAT I

P e // s I

S - -
. 2

€ THIS PAGE ‘Whan Data Entered

&SECURIT\ CLASSIFICATION OF THIS PAGE(When Data Entered)

Input word lengths are limited to 8 bits, 2's complement. Coefficients are
f variable. The output is full precision. Input data (x's) may be loaded in
parallel sequentially, or in parallel 3 at a time; or serfally 1, 3 or 9 at
b a time. The device can be programmed to function as a sliding window, a
E transversal filter, or a vector multiplier. Multiple devices may be chained

\ tagether to increase computational accuracy or to extend filter lengths
beyond 9 taps.

z A
B A

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

J il s

4
¥

et s I I T e T el .. I ”

PREFACE

The Programmable Image Processing Element (PIPE) program was
performed by Rockwell International, 3370 Miraloma Avenue, Anaheim,
California 92803, under Contract F33615-79-C-1905. The results were
first published in the final report draft in October 1980 bearing

—_—

Rockwell's document number C80-703/501. .~

The program was conducted from September 1979 through September 1980.
The program monitors were Dr. Ron Belt and Mr. Guy Couturier, Avionics
Laboratory (AFWAL/AADE), Air Force Wright Aeronautical Laboratories
(AFSC), Wright Patterson Air Force Base, Ohio 45433.

This document is unclassified; no part of it has been taken from a

classified document.

Accession For

NTTS GRA&I

DTIC TAB

Unannecunced 0
Justification.

By
| Distribution/
W“Availupility Codes
‘Avail and/or

Dige Specinl

|

iti

e R U

T .-

£ 4

ncand. 4 1

L ki v

i
!
TABLE OF CONTENTS

: 1. Introduction00un. Cetebeerestatseaontontrnonns 1

{ 2. Why PIPE? tiviiirieriieenserasnsnsansocnns eeerereeaas 2

2.1 Signal Processing Requirements of DoD eer 2

3. Recommended Architecture cesene cresccecanas 6

3.1 Principle of Operationcvivvicinnnnenoness 6

3.2 The Search for an Optimum AnSwercceeeees 9

3.3 Expanding the Versatilityccveveviiennnnn. 11

3.4 A Solution Based on Applicationsce... 17

3.5 A Candidate Elementceiiievererccrnceacnas 21

3.6 Problems and Retrenchmentccovceeiniens. 28

4, The Nine-Element Vector Multiplierccvcevee.ns 29

4.1 Overall Description of PIPE Device 29

4.2 The PIPE Algorithm ...cvviveiirnrennocncnnonansns 31

‘ 4,3 The Mechanics of the Algorithmcccvvvunves 33

4.4 Modifying the Basic Algorithmc... 35

4.5 Mechanization of the Modified Algorithms 40

4.5.1 Coefficient Input Sectioncocute 40

4,5.2 Partial-Product-Memory Section 43

4,5.3 Data Input Sectionccivviviivnnnnnsn 45

" 4.5.4 Arithmetic Sectioncciviviiiennencns . 50

4.5.5 Qutput Sectionccivvieenierecnncanes 52

4,5.6 Timing and Control Section 52

4.5.7 Overall Chip Structurec.cevicuvcnns 52
: 4.5.8 Using Multiple Devices for High Accuracy.. 52 !
.;¥. Appendix A - Logic Design and Layouteeeeveevuenenans 56 :
i RET I ENCES o vt eeseesenseesneeseeneasensnsensensessnsaneans 59 a

FrisChvlao iaGh bLAlKeNOL Flicky

- e —

3 LIST OF ILLUSTRATIONS
Figure Page
1 Examples of Compass Gradient Masksceveevvevnnnncnns .. 5 j
2 The Eight Principal Directions on a 3x3 Grid 5
3 Basic ROM-Accumulator Structureccoiivivienrnnennnnns 7 |
4 Block Multiplier Mechanizationcccciiiiiiiinnenenes 8
5 Conventional Mechanizationccciiiiiinenentonncnnnes 9
6 Candidate Hybrid Configuration for Inner—Product Generation . 10
7 Skeleton of Signal Processing Sectioncevcvviinvennnnns 21
8 Adder-Tree Sectionccveveeinerunnns Certeretereteeeneasaas 22
9 Partial-Product Register Section Ceeecreerecereereasas ereaes 23
10 Partial-Product Register Selector Ceteseceenneeeneans 24 ’
11 Data-Input Register Sectioncccivvieiiiniiiennrennnnss 25 '
12 Coefficient-Update-Register Sectioncceierveivanennnn. 25
13 Signal Processing Section (1 of 4 sections on a chip) 26
14 Total Signal-Processing Devicecoveveiienncecennnnnnns 27
15 Data-Bit Array ..ov.iiiieieeeinnceenececacroansestascossansnns K
16 Basic PIPE Architecturecovieivrenneennrarnrancscanns 35
17 Coefficient-Input Circuitryc.ccvnn... Ceeeeteetaanane 4]
18 Coefficient-Input Timing Diagramccceviiiieveennnnenn 42
19 Coefficient MemOrY .c.viiriniiiiieienneererecnacsenannssnsonss 44
20 Data Input Section ...cviiitineienrnennrerencnensnuronsosanans 46
21 PIPE Arithmetic and Output Section Ceeeeeraceaas 48
22 Computing SeqUENCE ...ivierereneteecnracaovonsosasesansansnns 51
23 Timing Sequence of Arithmetic Sectioncc.ievntnn 53
24 Timing Generator for Arithmetic Sectioncccvven. 54
25 PIPE Chip Organizationvveeeinrreearocneenarsonssnnennss 55 H

LIST OF TABLES

Table Page

1 Basic Memory Structure and Organization............cicuivunnnn 7
2 oundary Conditionsc.cveervsieernrnoncnnccssnnsesesannoean 13
3 for Various B, N ValUES ...c.vivirvenrnroncnonsncacnsasnnns 15
{0 . 16
5 Adder Requirements for 3x3 Organizationcccveenenn 17
6 Adder Requirements for 4x4 Organizationcccvevennnn 17
7 Fuzz-Phase Filter List iiiiieiinineninrsnecansenensneans 19
8 "A" Partial Product Memory Contents and Addressing 37
9 "B" Partial Product Memory Contents and Addressing 38

Vi

1. Introduction

The Programmable Image Processing Element {PIPE) program, which
was conducted by Rockwell International from September 1979 through
September 1980, consisted of three actual phases:

1. The definition of a programmable device which could
form the inner product of a pair of 16-element
vectors;

2. the definition of a programmable device which could
form the inner product of a pair of 9-element
vectors;

3. the partial logical design, simulation, and layout
of the device defined in 2.

Although a proposal was submitted to carry the program through the
making and delivery of optomasks, that proposal was not accepted
due to lack of funds.

This report contains four chapters. Chapter 2 addresses the rationale
for the existence of the PIPE, Chapter 3 describes the device which
was defined to combine a pair of 16-element vectors, and Chapter 4
describes the device which was defined to combine a pair of 9-element
vectors.

The summary of the device design effort is contained in the Appendix.

F 4
J

3
{
|
|
!

T g———

2. Why PIPE?

2.1 Signal Processing Requirements of DoD

Within any digital communications system, or radar, or sonar, or control
system we encounter innumerable requirements which are in a form known

as a digital filter. To the signal this function is analagous to the
familiar analog filters such as bandpass or lcw-pass or high-pass. These

filters are described by equations of the form

M
" =Z an xn-k +Z bn yn-k
n=0 n=1

where Yk is the output data sequence, Xy is the input data sequence, and
the a_ and bn coefficients describe the filter characteristic. Modulators

n
are described by equations of a similar but degenerate form

where m_ is the modulation sequence. Multiplexers are described by equations

of the form

L
Yk =Z e ke
£=1

where one n, at a time is unity, the others are zero and Xt is the £th

input at time k.

Image processing requirements are frequently of the form

as are many forms of one and two-dimensional transforms. This primal
computational form has arisen so frequently in signal-processing systems
that the efficient mecharization of this computation is seen as a vital
step in DoD's quest for high-speed Signal processing.

Mechanization of signal-processing functions is painfully slow when faced
with high-speed data for real-time processing. Digital signal-processing
systems can be improved in terms of speed and lower cost if the normally
employed arithmetic operations are streamlined.

For instance, a high resolution 875-1ine video system with a 4:3 aspect
ratio and 8-bit amplitude resolution provides about 8.17 million bits per
frame. At a frame rate of 60 per second, a 3-color display now requires a
data rate of 1.47 Gigabits/sec! Image enhancement calculations at that
speed seem impossible by today's standards.

Special signal-processing devices and organizations must be developed to
meet the increasingly difficult signal-processing requirements. The
development of the programmable image-processing element is an effort to
evolve a programmable microprocessor type of device which is specifically
a signal processor for high data rate applications.

The most frequently required image-processing function is that of a
sliding window. The input is a 3x3 array of picture elements, or pixels.
Each pixel is weighted by a coefficient, and the sum of products is the
output, usually assigned to a location in output space which corresponds
to the center of the 3x3 array.

Edge enhancement can be performed with an approximation to the bi-
Laplacian operator, a4§-2 as described in reference 1:

axlay?

’

»
'

e

-y

For directional edge information there exist several means to approximate
the partial derivative in the direction of interest as shown in the
following figures 1 and 2 which has been taken from reference 2.

These masks are but a sampling of the variety of window functions.
Integration can also be performed by approximating a sidelobe-suppressing
mean operator:

-
N

]

The purpose of this section has been to illustrate the versatility of
and the need for inner-product operators for signal processing.

DY el e K. & TOT St - el - - .

DETECTION ANC CODING CF [DGES USING DIRECTIONAL MASKS

pirection of Direction of Prewitt Kirsch Three-level Five~level
Edge Gradient Masks Masks Simple Masks Simple Misks
1 1 1 5 5 5 1 1 1] 1 2 1]
o North 1 -2 1 -3 ¢ -3 0 0 0 0 0 0
-1 -1 -1 -3 -3 -3 v a1 -1 L1 -2 -1l

[1 1 1] [5 5 =37 M1 1 07 [2 1 07

1 Northwest 1 -2 -1 S 0 -3 1 0 -1 1 9 -1 i
[1 -1 -1 -3 -3 -3 Lo -1 1] Lo a1 —:J I
1 1 -1 [5 =3 =31 [t o -1] [1 o -1]
N West 1 -2 -1 s 0 -3 1 0 -1 2 0 -2 :

s -3 -3] L1 o -1 Lt o -1J

3 Southwest 1 -2 -1 5 0o -3 1 0o -1 1 0 -1
L1 1 1 L 5 5 =3J L 1 1 0J L 2 1 0]

-1 <1 -17] f-3 -3 -3] -1 -1 -1] (— -2 -1]
4 South 1 -2 1 -3 0 -3 0 o o 0o o

L1 1 1) Ls s 5] 1 1J L1 2 1l

-1 -1 1] [-3 -3 -3] -1 -1 0] f-2 -1 0]
s Southeast -1 -2 1 -3 0 5 .10 1 -1 06 1

L1 2 1) L3 s s 0 1 1] 1 2]

6 East -1 -2 1 -3 4 5 -1 0 1
-1 1 1 -3 -3 54 -1 0 1J

1 1 1 -3 5 57 0 1 1]
7 Northeast -1 -2 1 -3 0 S -1
-1 -1 1 -3 -3 -3] -1 -1 0

[o
-1 1 1 -3 -3 5 -1017[-10

Figure 1. Examples of Compass Gradient Masks

3 2 1| J
f AN

L i
5 Figure 2. The Eight Principal
i 4q < >0 Directions on a 3x3 |
- Grid :
P |
\,
3 A \ |
L’ 5 S 7
b

G.S. Robinson, "Detection and Coding of Edges Using Directional Masks," SPIE
Vol. 87, Advances in Image Transmission Techniques (1976) pp. 117-125.

5

. VoL .
T Y . I P e T

3. Recommended Architecture
3.1 Principle of Operation

' In the preceding chapter we demonstrated that our fundamental
premise is that most signal-processing tasks can be expressed as a
vector dot (or inner, or scalar) product,

e.g.: P=Xg ¥y ¥ Xo Yot oo v XY
J
) JE] xj yJ
=x'y
where X = col[x], Xps « « o xj]
and Y= co][y], Yps « o o - yj]

As Peled and Liu observed,3 if we consider the xj as being composed of
numbers of K amplitude bits and a sign bit, the x‘j can be expressed as
fractional values:

K -k

xj = kzo aij

Therefore, the inner product may be written as

J K e
p= I I a.y.2
‘ j=1 k=g K
5, K "
: = I [I a;,y.?2
i'. k=0 Lj=1 IKJ
8 -

- -

; The above expressions imply two facts:
Each q, may be generated by one table lookup operation in a
‘ ZJ-I word memory, where the word length, W = [log2 J] +
requirement on individual yj.

p may be generated by K shift-and-add (S&A) operations.
! These equations can be mechanized by the simple configuration which is
shown below,
L]
l‘ _ .)L_.l——_———' ‘]
Xy e 2 w !
P :g:o b o

Xy __,.‘«...l |

I
,

Pw

Qs

Figure 3. Basic ROM-Accumulator Structure

where the organization of the ROM is indicated below in Table 1 for the

J=3 case.
TABLE 1. BASIC MEMORY STRUCTURE & ORGANIZATION
INPUT PATTERN EQUALS MEMORY

MEMORY ADDRESS CONTENT

X X, X3 A

0 0 0 0

0 0 1 ¥3

0 1 0 2

0 1 1 y2+y3

1 0 0 .Y~|

1 0 1 y]+y3

1 1 0 y]+y2

1 1 1 PRTRE

S e = o

LAl L g oo ST o

If our problem were initially one of convolution, such as

J
Ph= 2 *nog Y3
j=1
then ;
SAEEDIEDY :é;ah-j,k Oheg 1-kZ
T

which is two-dimensional convolution. Three facts can be drawn out from this:

1. Looking at the problem as one of bit manipulation raises the
order of convolution by only one. (The generalization can be
rigorously justified.)

2. Convergence is uniform so we can operate the summations in any
order without affecting the answer.

3. This impacts heavily computing time and complexity of hardware.

Let's return our attention to the basic inner-product statement:

D ET,

j k 35k Pj,i-k

We could mechanize this by summing over j, then over k

~

| .
.‘ T
' !

. 20 i

. i + . P

WORD ‘]

. RAM i
" . L
_ ——— i

—ea

D ww»

A .’r o

¥2 FOR LARGF J THESE

. | . . ARE QUITE COMPLEX
. of
ADDERS
v)

Figure 4, Block Multiplier Mechanization

or we could mechanize by summing this over k, then over j

K BIT K BIT K BIT
BY 8y 8y FOR LARGE J
K BIT K BIT o o o K BIT | < THIS IS QUITE
MULT. MULT. MULT. A MESS TOO
[] L] L]
SUMMER L

Figure 5 Conventional Mechanization

Neither solution is satisfactory. Each solution represents an extreme.

If we explore summing over part of j, several times, then over k, then our
remainder of j (which we can do because the order of operations does not
affect the answer), we have in interesting hybrid solution,

3.2 The Search for an Optimum Answer4

Suppose
1. We use M table-lookup multipliers
2. Each block multiplier operates on vectors of dimensfon N

Since the total dimension of the vectors in the problem is J, then J=MN.
A product accuracy of K + 1 bits will be maintained, so

J M
p= L X, ¥;:= L P
J=1 33 mel M

L - . o A . e

Tnna

a7

]

e ——
T m—— R e

where P is the output of the mEﬂ block multiplier

N

P = 2y *neb(m-1) Ynen(m-1)

and each x can be decomposed into its constituent bits:

&~ 2%

= -k
Xn+N(m_]) = k=0 a(n,m,N,k)z

The new system which we are examining is shown below in Figure 6.

¥4 YN YN+1 Yan YN Yy
X L L x l X311 l l 10F M
1 N+1 H1N BLOCK
xp MULTIPLIERS
X3

N —» X2N —
Py sy Py Lt P
M OUTPUT, P

Figure 6 Candidate Hybrid Configuration
for Inner-Product Generation

10

> -
0% Rape = ~ ~ -
v . C e e o o
R b TS s e -

g - "

YL AN
of

e =

> -

Rhal i

\ .-

¥

3. Expanding the Versatility

We have much more powerful processing means if both x and y components
are free variables. Let's go back to the inner-product statement

p =
J

;i

e c

where x was composed of K + 1 bits:

K -k
= 2
T N

Now y can be similarly composed of L + 1 bits:

L
Y57 gy it

2“6

SO

-(k+2)
_ L I & a, b.2(
p = i k 2 Jjk “je

If we define a new exponent of 2
i8 ke

the inner-product statement becomes

= -1
PR Ltk Ppaad

which is one-dimensional convolution.

n

1
J
i
i

Now we need a computational-complexity measure.

A minimum-complexity mechanization for a serial/parallel multiplier
requires K full adders, plus some overhead logic. We will use this
to construct our computational complexity measure.

Conventional mechanization of p = x.y. therefore requires

J7J

w Ml

Jj=1
adders

product x J products + [J-1] adders to sum products = KJ+J-1 adders.

K adders

bTock muTt for the shift-and-add section

A block multiplier requires
plus the adder tree.

The number of adders required to combine N inputs into sets of S is g) s

therefore, the total number of adders in a block multiplier structure is

N/
) -)
s=2 \S s=0

The total number of adders for the hybrid collection-of-block-multipliers
approach is

2N - (N+1).

adders

N
(k+2-(M1)] iTerpTTer

X M multipliers + [M-1] adders to sum
products.

Table 2 explores the boundary conditions of mechanization approach vs

the dimension of the vector for two sample word lengths; 8 bits and 16 bits
are explored as an example.

12

Table 2 - BOUNDARY CONDITIONS

COMPARISON OF MULTIPLIER COMPLEXITY
(NUMBER OF ADDERS REQUIRED)

Dimension of
Vectors, J

W OO ~N O o & W ™

-—
o

M=1; N=J
Block Multiplier
K+2J-(J+1)
8 Bits 16 Bits
8 16
11 19
18 26
33 4]
64 72
127 135
254 262
509 517
1020 1028

M=d; N=1
Conventional
J(K+1)-1
8 Bits 16 Bits
15 31
23 47
31 63
39 79
47 95
55 111
63 127
7 143
79 159

13

T a——— - e
> ~———

M. e mak .

We see that an optimum solution 1ies between 1<M<J and 1<N<J.
1 The number of adders used in one hybrid solution is:

| A=ke2N o (N41)] M- = pke2Mong Mot

Our formal minimization procedure is the following: i
Normalize with respect to J = MN o
Define the total number of bits as B = K+]
For computational convenience, define the auxiliary variable '1

A Al

_ p-142V :
- Bl

A
and minimize A with respect to N. Now, let us compare this
result with that of conventional mechanization:

AC = KJ+J-1 = (B-1)Jd+J-1 = BJ-1

“ For computational simplicity we will describe another auxiliary 1
variable:
ﬂc = At g
J

Notice that we cannot compare this with straight block multiplier

- mechanization using the same formulation because the parameter J
g‘; cannot be removed by normalizing, i.e.:
4 Ay = Ke2) - (341) = B2 - 0-2
i
| A+l J
A =B . BfZ -1

Y B T J

{

- o, !
.S

-
:

RN

A comparison of R for various values of B and N is shown in Table 3. The
N=1 column is identically the same as Ac' For word lengths of 4 bits the
optimum combination is 2-element vectors; for word lengths of 8, 12, and 16
bits, the optimum combination is 3-element vectors; for word lengths of 20,
24, 28, 32, and 36 bits the optimum combination is 4-element vectors.

TABLE 3. A FOR VARIOUS B, N VALUES

N
B 1) | 2 3 4 5
4 212 | 223 | 334 | 6

8 8 4172 | 4 434 | 6Ws
12 12 612 | 513 | 534 | 735
16 16 812 | 623 | 634 | 825
2 0 | w12 | 8 734 | S5
24 2 | R2yv2 | 13 |83 | B
28 B | WY2 | 1023 | 93 | 1045
32 2 | Bl2 | L 1034 | 11-3/5
% % | BY2 | BV3 | L-3m | 1225

Shown in Table 4 is a tabulation of ﬂb for various values of B and J.
Not suprisingly, if J is replaced by N, Table 4 contains the same
numerical entries as Table 3, validating again our conclusion of what
constitutes a minimum-complexity multiplier.

15

i

Cl/6-b0L | 6/,-65 | 8/e-s€ | /z-2z | 2/1-§1| S/z-21 | w/e-11| e/L-€1 w1 | ot

2/L-v0L | €/1-65 | 8/z-ve | 1/s-12 | 9/5-v1 | s/e-11| w/e-01 21 w1 | 2
0L/L-0L | 6/8-8S | 8/€-v€ | L/l-12 | 9/1-v1| S/v-0L | w/e-6 | g/z-01 %l | 82
Ol/z-t0L | 6/b-8S | 8/L-€€ | 1/v-0z | 2/1-¢1 oL v/e-8 | £/16 AR
01/£-€0T 85 8/c-€¢ 0z | 9/5-zt| s/t6| wieL 8 %1 | 0z
01/6-20L | 6/5-L5 | 8/t-2¢ | i/e-6L | 9/i-21| S/z8 | v/e-9 | €/2-9 % | 91

2/1-201 | 6/1-15 | 8/e-ze | /981 | z/1-11| s/e-| w/ie-s | e/1-s 9 | et
01/1-201 | €/2-95 | 8/t-1¢ | t/z-81 | 9/5-01 | S/v-9 | w/e-v y |8
o1/c-101 | 6/2-9s | 8/ L& | t/s-c1 | 9/1-01 9 p/e-€ | €/2-2 w2 |y

o1 6 8 L 9 5 y £ ¢

(0*g) m« ‘b 378V1

16

' 3.4 A Solution Based on Applications
The following set of observations appears to be valid:

For word lengths of 8, 12, and 16 bits, 3x3 table lookup multi-
pliers are most efficient.

For word lengths greater than 16 bits, 4x4 table lookup multi-
pliers are most efficient. If, however, we used the 3x3 table

‘ lookup multipliers for the greater word length cases, the per-
centages of extra adders (over the optimum 4x4) is

TABLE 5 ADDER REQUIREMENTS
FOR 3x3 ORGANIZATION

WORD LENGTH, B T"% OF ADDITIONAL
_NORMALIZED ADDERS |
20 ? 3%
24 | 7%
28 | 9% {
32 | 12%
36 | 13%

We may therefore conclude that the penalty is small for the
advantages gained by using the standardized 3x3 table Tookup
multiplier structure.

On the other hand, if we use the 4x4 table-lookup multiplier
for the shorter word lengths, the penalty paid in terms of
additional adders over the 3x3 table-lookup multiplier is
shown below in Table 6.

TABLE 6 ADDER REQUIREMENTS

&, FOR 4x4 ORGANIZATION
s .
;\ % OF ADDITIONAL
3 WORD LENGTH, B NORMALIZED ADDEFS
y —_
i 4 41
. 8 19
3 12 8
jii 16 1
157 We have to look now at applications in order to decide if we should
- use a 3x3 multiplier as standard or a 4x4 multiplier.
La
¥ 17

Bl mtadhn Lo gL on o Lt S — -
———

Y T STy v

bV G

WCT L e

YR

The 4x4 multiplier is a natural building block to perform a 2D transform of
dimension ZN X 2N where N is an integer.

The 4x4 multiplier is also the natural building block to perform a complex
FFT butterfly computation. The decimate-in-frequency butterfly is described by

X=u+v
Yy = Wz
zZ=u-v

where the complex inputs are u and v, the complex outputs are x and y, the
complex weighting coefficient is w, and z is an auxiliary variable. Then

X, = U + v
1 V 1
= - U, W, - V. w_ *+ v, w,
Yp = Up Wy - Uy Wy Vi %
= UL W -V W, -
Yi T UL W R UL W - VW - VLW
or
" x] 1 0 1 o]lu
r
1 0 .
X; i 0 1 u1
Y, W o weo-weo Wl |
, . W -W, - :
Ly1 | ¥ ro M Wl LY

which can be performed handily by our 4x4 structure. The decimate-in-
time butterfly is described by

=u+p
=u_p
P = VW

where u, v, w, X, and y are as described above and p is an auxiliary variable.

18

Rt oy -

e, A

Qs - PR ®

g;
.’
b
- i
-,
k.

j i r i i'r
Yp T Up = Ve W P Vg Wy
Yy T Uj - Vp Wy ooV Wy
or

Fxr' B 0w, -wi7 _urﬁ
X; 0] W, W, Uy
Yy 1 0 W W Ve
Lyi- L0 T -w, wr- Lvi.

which again can be performed handily by the 4x4 structure.

A set of 4 such vector multipliers can also be used directly as a
general 4x4 coordinate transformer or as a matrix multiplier, or
to mechanize a filter as described below in Table 7.

TABLE 7 FUZZ-PHRASE FILTER LIST

(Pick a line from - ach category, A thru G, to describe function)

A. E.
1. Fixed Coefficient 1. One-Dimensional
2. Programmed time-variable 2. Two-Dimensional
parameter
3. Adaptive "
B. I. Low-pass
1. Linear 2. High-pass
2. Programmed Nonlinear 3. Bandpass
4. Band reject
C. 5. A1l pass
1. Recursive 6. Arbitrary spectrum
2. Transversal shaping
D G.
1. Fixed Structure 1. Filter
2. variable Order (up to 16 taps) 2. Equalizer

P
~

RENY N

I Ry

)
N,

b2}

The same identical architecture can be programmed to also function as a

OWOONO WPy —
. . L4 . L3 . . . (]

Modulator/Demodulator (set of 4)
Coordinate Transformer (up to 4 rotations)
Polynomial Function Generator

Element of Pattern Classifier

Multiplexer (4-4:1 or 2-8:1 or 1-8:1 and 2-4:1 or 1-12:1 and
1-4:1 or 1-16:1)

Matched Filter

Edge-Extraction Mask

Sobel Operator

Cosine Transformer (4x4, or 8x2, or 16x1)
Hadamard Transformer

Unsharp Masking

Despike Element

Etc.

For Operations in: Mapmatching

A5 0 %% Ta

Midcourse Updating

Doppler Radar and processing

Target detection, identification, tracking, cueing
Aimpoint selection

Correlation

Data windowing

Filtering of signals

Sonar spectrum analysis

Inertial platform stabilization
Instrument caging

Flight control stability augmentation
Adaptive noise cancelling

Speech enhancement

Adaptive line enhancement/cancellation
Channel equalization for data modems
Data compaction/AJ protection

FLIR Display Systems

Dynamic range compression functions
Autothresholding for video noise limiting
Chrome separation for digital video
Pattern recognition systems

Automatic fingerprint classification
Optical character reader

Nonlinear noise filter

Thin-fill 2D data reduction

20

3.5 A Candidate Element

The skeleton of a basic signal processing section based on the foregoing
is shown in Figure 7. This circuit mechanizes in each of 4 sections the
following function

3
Yk T Z 5k *jk
j=0
where the xjk may be independent (general inner product), or successive
samples of an input (transversal filter) or some may be successive samples

of the output (recursive filter). The coefficients ajk may be wholly
repiaced each sample time, or incrementally updated (adaptive filter).

4 SETS OF
COEFFICIENTS COEFFICIENT] appER

REGISTERS TREE

ADDRESS LOAD MEMORY
y
4 SETS OF DATA PARTIAL

DATA —————— PRODUCT
REGISTERS MEMORY

Y

4

4

., -
s

_ SHIFT &
ONE OUTPUT ADD

Y

Figure 7 Skeleton of Signal Processing Section
(1 of 4 sections on a chip)

By

The 4 data words address the partial-product memory as in section 3-1. The
contents of the partial-product memory were obtained by combining the
coefficients through the adder tree.

‘v:” L
o e

ot ey

21

.

-

°f

- TR
ied S

A

Buttner and Schiiss]er5 have shown that since xjk can be expressed in terms
of its N bits, b'km’ then for 2's-complement format,

J
N-1 o
X., =b. n* I b 2
Jk jkO n-1 jkn
and since : : : : N-1
- 1 1 = 1 A 1 Y -n _ -N

ik =2 %2) T 2050tk F 2 2 Ok Pkn 12T -2

then N-1
= 1 1-000)2™ Y 4 TE gl 1)- (bapgbiya) Gl{bay 2]

Y T2 9 0t bga 107 P ik05k0’ 91t Pke
where 3
and

a(n) = -q(15-n) . for n ¢ [8, 15]

An extremely efficient streamlined mechanization is shown below. The a's

are combined to generate all possible q(n) as shown in the adder tree of
Figure 8.

T r - — "‘(ﬂ
|
|
3
: |
w e - = * ut3t .
E | - e a b
@) E
i | :
X
@ ! :
g ' -4 qn 4
g 1 s¢
« | o b :é
% 3%
g . | 52
3 I o
-3 43
* : a6 § 22
e 1 » @ 2g
.
O
|
|
' » n(y

Figure 8. Adder-tree Section

22

. The a's are 16-bit numbers, but the q(n) are 18-bit numbers since q(n)
! can be as large as the sum of 4 a's. We want 3 sets of "q" registers;
o one as the momentary working set, and one or two being loaded as Sshown
- in Figure 9.
\
FROM NO. 1 FROM NO. 2 RE.G'STER
e

[+) q(2) o—4
—0
1
Toors[a]—0;
° o—{
1
m q(4) J—‘;C*—J
—o0
1
[¢] \)74—4 q(5) o—de
~——0
1
o ot al6) o—
—0
1
o q(7) 0—
——o0

/’18

8 SERIAL-PARALLEL

REGISTERS AT 18 70 Y

) = ~ ~ BITS EACH PARALLEL

' TO 2 OTHER PARTIAL ADDER/SUBTR
PRODUCT REGISTER SECTIONS

Figure 9. Partial-Product Register Section

.,
o

The outputs which feed the adder/subtractor are then summed (or differenced)
according to y, = rq(n)2™".

Heyl &

The selection of a particular q(n) is according to the bits in xjk’ i.e.,
the bjkn‘ The decoding network (partial-product register selector) is
shown in Figure 10.

o e T

Y

23

b

hs.)

X3
Xz
Xy
Xo

ql0}

atl)

ql2)

ql3)

ql(4)

q - REGISTER SELECT

q{5)

q{6)

AN

Figure 10. Partial-Product Register Selector

The circuit of Figure 10 is driven by the data-input-register section which is
shown in Figure 11. The 4 shift registers may each be driven from a serial
input path, chained with the preceding register or loaded from the output.
These 3 options for each of 4 registers give 12 control states which are
addressed by 4 function-select lines.

The x outputs from the shift registers may also be used to provide the "internal"
signals to the coefficient update register section which is shown in Figure 12.
This is to facilitate the adaptive filter update computation

a3 = 35(k-1) + uxjksgn(ek).6
The u is mechanized by the shift. Since the update must be formed before the
error signal, € is available, one update-register section assumes € 0, the
other assumes e < 0. The correct g-register set is chosen after € has been
completed. This is the reason for two sets of registers being Toaded simultaneously.

A basic signal-processing section based upon the foregoing is shown in Figure 13. 1

24

T A Lo N TR R - - - - - .

! SIGN-BIT TIMING PULSE

4 CHAINING

TO ADD/ SUBTRACT CONTROL i
INPUTS D

OF PARALLEL ADDER

- %)
SERIAL

. !
i
. [
‘ DATA - BIT &'L}'j—‘—_:" X4
INPUTS i :
) .
_ - BIT SR. ,
'
|
!

v
TO PARTIAL PRODUCT
SELECTOR & COEFF
UPDATE REGISTERS

.

FEEDBACK

CHAINING <
OUTPUT | (_ o _

FUNCTION SELECT

Figure 11. Data-Input Register Section

(EXT

- w
INT. &
EXT. i
n Q
; = 4 INT. ?2
. $ o
S = EXT. | -
. ! 4
, ; >
' INT. D 24 - BIT S.R. (=
') |)
EXT. 1 p | ! o
O |
2 l SHIFT |-~ }:E ; > 2)
4 Nt >— +2 2 .BITSR. |
| |
! T .
5
INPUT SHIFT ACCUM ADD/
¥ SELECT SELECT SUBTR.

Figure 12. Coefficient-Update-Register Section

(diy) ® uo suoi3dds y 30 [) u0(333S buiss3aodd jeubis ‘gl 84nbig

L0316 3SLON-330punoy Mo v, ‘Bueyd "L ‘(L) 39S

"gL6l ARl ‘SYIST 3331 "O044 o 34N3TNALS 493 LS
-dnp| LG <0442 };0puUnO.d [04JUOD.

y3aav
Nowwod o1 ¢ (OL914) ¥ov8a3dd ¢
TIRERE (LL 914}) 1NdINo
NOS/ONNOY/L41HS 4315153y sualsiozy [70% ONINVTHC
13NAa0Xd 1NdNI-VIVa je~4— vivd
» IvilHvd 1 TYNY3LX3
v LNdNI
12 ans/d3aav | ONINIVHD
+ gl YOHINOD H18NS/QaY
A
%
43121931
Y
g ETTTEN pa B N 15nAo0Yd
* IViLHYd
/.
“y
(6 DI .
¥31S193Y (¥31s193y
O—
™ 19NA0Hd 3341 31Vadn
1vILHVd y3aav 1IN319144300 14
3 (8 O1d) dasis
43151934 181938
rfo 19Na0Yd P EELT «—~— 31vadn | 44300
qviidvd \w H3iqaav 1IN3IJI44300 v TVYNH3ILX3

26

R e e

Figure 14 shows how the signal-processing sections of Figure 13 are
interconnected to extend the upper limit of the Yy sum from 3 to a

number as great as 15 on a single chip.

CHAINED
INPUT

P &- w, w w
z & 5 & 3 £ 8 | &
o] o o 8 < g o (a) 8
SIGNAL SIGNAL SIGNAL SIGNAL
CHAINE
—»{PROCESSING > PROCESSING‘—’J\——b PROCESSING —PROCESSING}———+ o
SECTION SECTION SECTION SECTION OUTPUT
(FIG 13) (FIG 13) (FIG 13) (FIG13)
4 r Y 9 4
A N P p N
q X — ¢
7T —T 2
J? JV JV Jy
SECTION SECTION SUMMED SECTION SECTION
OUTPUT OUTPUT OUTPUT OUTPUT OUTPUT
Figure 14. Total Signal-Processing Device

The functions which we have discussed above are capable of mechanizing
signal-processing requirements such as:

- Vector-matrix operator with fixed or variable coefficients 4 x 4,
or2x8,orl1 x8and2x4,or1 x12and1 x40rl1x16
(dimensions may be raised by chaining with other devices.)

- Generalized fast-generalized-transform operator (decimate in time
or decimate in sequency).

* Digital filter (up to 4)
fixed parameter, variable parameter or adaptive

denominator order, D €{0,15}
N ¢{0,15-

numerator order,

27

0}

C rape—— e -
Vo "

Set of 4 modulators/demodulators

p
b
E ' Multiplexers
. 4-4:1 or 2-8:1 or 1-8:1 and 2-4:1 or 1-12:1 and 1-4:1 or 1-16:1
) Image-processing functions such as sliding windows |
3.6 Problems and Retrenchment
A preliminary transistor count revealed that this very desirable structure ;
4 would be an extremely ambitious circuit with 88,000 transistors. The device ;i
“ design could not be completed under the contract. i

- A second, less ambitious, structure which was a nine-element vector multi-
plier was pursued into the design and layout stages. That design, which
became identified as the PIPE device, is described in the following chapter.

-
.

28

T an b4

e e

Ty

4, The Nine-Element Vector Multiplier
4.1 Overall Description of PIPE Device
The PIPE provides every nine 10 ns-clock periods the sum of products

where each a and Xn is an 8-bit 2's—comp]gment number, thereby performing

@ true multiply-and-accumulate function 10° times per second. The full 19-
bit product is available as an output which permits the devices to be com-
bined to perform higher accuracy computations. The coefficient a's are
parallel loaded and stored on-chip while the data x's may be loaded serially
or in parallel in a fashion which makes the chip directly usable as a FIR
(finite-impulse response) filter described by the transfer function

G(z) nzo az
Any number of such chips can be chained together to form a longer filter.
Only an external summing means is required to accumulate the final result.
The device description is given below:
Supply Voltage: 5 volts
CM0S/S0S 2 um technology using static Togic
Clock Frequency: 100 MHz
Operating temperature range: -55°C to +125°C
Packaging: leadless hermetic chip carrier corresponding
to JDEC specification
Input specification: there are 7 input formats; all input
patterns must occur within 9 clock periods.
These formats are:
1. single parallel input applied 9 (or fewer)
consecutive times.
2. single parallel input applied once
3 parallel inputs applied 3 times
3 parallel inputs applied once

29

5. single serial input applied once

. 6. three serial inputs applied once

E 7. nine serial inputs applied once

; The input data word is in 2's-complement, 8-bit
‘ format. The format is controlled by a 3-bit

3 format-control line. The input section has 28

pins (3x8, 1 out, 3 control).
® Qutput specification:
Single 10-bit output tristate bus for full accuracy.
Least significant 10 bits available immediately.
Flag indicates when the 10 most significant bits are ready.
Most significant bits on output bus in response to external strobe.
The output section has 14 pins (10 out, 1 flag for LSBs ready,
1 flag for MSBs ready, 1 MSB strobe, 1 reset).
¢ Coefficient specification:
Single 8-bit input bus for one-at-a-time parallel loading of 8-bit
2's-complement coefficient.
Separate 4-bit input-address identification.
One load control, one memory-write control.
The coefficient section has 14 pins.
* The pins required by the PIPE device are given below:
24 for 3 parallel 8-bit input data words
1 for serial data-line out
3 for input-data format
10 for parallel output data
for output flags
for output control
for parallel coefficient word in

2
2
8
I 4 for coefficient address
2 for coefficient control
1 for word timing
1 for clock
1 for power
_1 for ground
60 pins committed

30

..“‘c"mn i
a

Lol i

A

v .
N ew

4.2 The PIPE Algorithm
Recall that the PIPE forms the product

9

Y nzl *n*n

where the X, are input data words, the a, stored coefficients, and y is
the sum of the products. Both the a, and the X, are 8-bit, 2's-complement
numbers; Xn is composed of the bits {bnm} wherem =0, 1, 2, ... 7. In
order to easily describe the computational approaches which were con-
sidered, let us examine the array of bits which form the {xn}:

b b

Xp: byg by by byz by byg Byg By
Xg: byg Bay bpp bpz by byg byg by
X3: byg b3y b3y b33 byy b3g b3g bsy
Xg bgg bgy bgp byz byy bgs bgg byg
Xs: bgg by bgy bgz b5y by bgg bgy
X bgg bgy bgp bgz bgy bgs bgg bgy
X7: by by Byp byz by by byg by
Xg: bgy bgy bgy bg3 by bgg bgg by
Xg: bgy bgy bgy bgy bgg bgg bgg bgy

Figure 15. Data-Bit Array

31

L, The combining of this array of bits with the "a" coefficients is the process i

. by which the desired result, y, is obtained. There exist, however, several ’
| diverse means by which this combining may be accomplished. One means uses

the array of bits in a row-by-row fashion. Each individual row is multiplied

by the corresponding "a" coefficient and the results summed in an accumulator

with the results of the previously executed products. This standard lumped-

arithmetic approach requires 9 full multiplications and 8 adds into the accumulator.

The direct computation using this approach is

9
y=15§¥ Y
n=1 "
where
Yn T 4*n
and 7 "
Xn T 'bnO oI bmn2

m=1
so a direct computation would require that we compute 9 times

7 -m
Yp = 3 Dby * mf] bun?]
or if we use the Booth algorithm8,
- 7
T. -m
- y, = L[ac 2
N g=p MmN
]
i where
b' mn = Omn * bmn+1,n; bgy = 0
3¢
‘J or if we use the more efficient modified-Booth (or 3 BAAT) a]gorithmg,
'E 3
-2m
y. = ¢ ad 2
‘.‘ R oo nmn
; where
.J don ['bmn *hbpaay * Bbpnae t bpnysl

\
L]

..
o

LY §

T s e >

‘Ei
X
,
+
-
L)
\
%
B
i

One can show that 4BAAT, 5BAAT, etc., algorithms reduce to the 3BAAT
cases for binary multiplication. Some improvement, but not enough.

In our quest for greater computational efficiency, we shall approach

a second means which uses the array of bits of Figure 15, not in a
row-by-row fashion, but in a column-by-column fashion. Interestingly,
the set of bits in a column is used as a memory address. This is an
adaption of the candidate element architecture which was discussed
earlier.

The contents at that memory address is summed in an accumulator with
one-half the previous results. This procedure requires 8 table-lookup
operations and 8 adds into the accumulator, not to form each Yps but
to form the total result, y. The advantages and efficiency of this
latter distributed-arithmetic method are obviously great. The follow-
ing paragraphs describe the means of computation in detail.

4.3 The Mechanics of the Algorithm

Here's how it works. Each Xn is composed of the 8 bits, bnm

which combine as follows to establish the value of Xp*

- -m

The sign bit, bno’ is unity if Xn is a negative number, and is zero other-
wise. Now, since 5

X, = 1/2[x —(-xn)] (3)
we may then express (2) as:

Y+ 1 (b -b)2™.277y (4)

x_ - 1/2[-(b__ -b
n no me] o Am T am

no

33

Y

Substituting (4) into (1) yields the following expression:

4] 9 9 | 9 _ m 9 -
‘ y =12 i-2 nzl G * mzl nzl an(nm bl | 2 _nEI n(no o’ (5)
Initial Partial Sign
Condition Product Correction
(m=0 term)

The possible value of each bnm i5s either 0 or 1, hence the possible value
of each term (bnm —bnm) is + 1. The bracketed term within the "partial
product" braces of (5) can take on a total of 29 possible values, but all
entries appear twice; hence, there are only % 29 = 256 distinct values.

If the "a" coefficients are each 8 bits in length, then each of the 256
values will be stored with an accuracy of 8+[10929]RU = 12 bits. The 'sign
correction" values as well as the bracketed part of the "initial condition"
value happen to be among the 256 distinct values. Certainly, one valid

approach to computing (5) is to use a table-lookup operation in which during the
first clock period we form the first partial result:
9 9 _
ry = [-2 a]+«[T a (b5 -b)] (6)
1 n=1 " ne1 MW7 n7
Both bracketed quantities were obtained from the coefficient memory.
During the 2nd through 7th periods we form the 2nd through 7th partial results
- ro=1/2r 4+ [

a_(b -b)1 (7)

- 9
L

o~ p p-1 n=] N n.8-p “n,E-p

-

i ' where p=2 through 7. During the 8th clock period we form the final result

giﬁ 9

gy = = - -b

% 2y =rg=1/2r, z a (b -b) (8)
3

Py
.
x
-
-
N
B

-

f .

P adhcl Bt A

\3

e, A

w1 P

v

During the 9th clock period the result is transferred to the output
register, the circuits are reinitialized, and we are ready to begin
another cycle of computing y. A block diagram of this structure is
shown in Figure 16.

ADDER
DECODER TREE
X1 MEMORY o
D — l¢—— 8
X2 —»| 256 WORDS 2
: x 12 BITS .
Xg —pf a9
ADD/SUBTRACT
CONTROL

y A
PARALLEL ADDER

OUTPUT

«

Figure 16. Basic PIPE Architecture

4-4, Modifying the Basic Algorithm

A decision was made to make the chip so that the coefficients
could be changed. In order to be able to change coefficients during
computation, two memory sets would be required; one being the present
working memory containing functions of the "old" coefficients, the
other being the memory into which we load functions of the new co-
efficients. Unfortunately, the resulting 2 x 256 word x 12 bit/word =
6144 bit high-speed memory was not practical to implement.

35

e R P g <o

PO Tt e ey —e e eaae

v

= AR T g 13

Ere——

He &

X2k 0

b Py
ERENAY. o1
i

Two simplifying steps were taken. First, a restriction was established
such that the coefficients could not be changed during computation.

This halved the memory requirement. Secondly, we partitioned y = 2 + Yo
so that

4
Yi © n£1 2n*n
and 9
Yo © n§5 2n*n
consequently,
.7 4 7 4 n 4 a
2yy = -2 nzl a, * mil [nxlan(bnm nm)]2 -nil a (bno - no)
and
2y, = -2'7 g a_ + ; [g a (b)]2'm - g a (b -b_)
2 n=5 " n=1 n=5 nm~ n=5 N MO "no

Now for ¥y we need only a 1/2-24 = 8-word partial-product memory, and for
yo we need only]/2-25 = 16-word partial-product memory, a dramatic

reduction in the number of stored words.

4 _
The 16 possible values of nzl a (bnm -bnm) are iAO through 1A7 as
. 9 e
shown in Table 8; the 32 possible values of nES a (bnm-bnm) are 180

through #B,. as shown in Table 9.

36

TABLE 8. “A" PARTIAL PRODUCT MEMORY CONTENTS AND ADDRESSING
ADDRESS s
B um 3m L m “A" PARTIAL PRODUCT MEMORY
0 0 0 0 - (a, +a,) - (a, +a)) = -Aj i
;
(a, = a)) = A }
(a, - al) = -A,) ‘
(a2 + al) = -Ag %ﬁ ‘
(a, + al) = -A, ig {
(ay = a)) = ~Ag gg |
(a, =~ a; = -A¢
(a2 + al) = —A7
(a, + a;) = *A,
(a, = a)) = +Ag
(a, - a)) = +Ag 9
e
(a, + a;) = +A, g .
(a, +ap) = *A 88
(a, = a)) = A, ®
(ay = ap) = *A)
(a, + a;) =+,

38

¥

{
TABLE 9. “B" PARTIAL PRODUCT MEMORY CONTENTS
| , e - _
ADDRESS
) ; b “b b b "B PARTLAL PRODUCT
. 9m] 8m Tm 6m ' Sm L ARTLIAL PRophuc
1 ! i ! T
0 § 0 3 0 0 : 0 ' -ag—(u8 + 37) - (u6 + as)
! s ! !
\ 0o : 0 0 0 : 1 f—a-(a +a.) - (a, - a_) =
% : ‘ ; T 6 P
' ; i —a.—(a, + : + (a, - ¢
: 0 0 0 | 1 0 } a9 (18 17) (16 15)
: i - = . .
0 0 0 f 1 1 I a9 (a8 + 47) + (36 + ds)
: 0 o 1 } 0 : 0 : -a9-(a8 - a7) - (a6 + 35)
i . : i
g 0 0 1 .0 1 ; —ag-(a8 - d7) - (a6 - as)
! | ma = - - -
0 0 1 1 0 i ay (58 a7) + (ah aﬁ)
0 0 ‘ 1 f 1 § 1 : —ag—(a8 - 37) + (36 + as)
0 1 0 -0 0 i —a9+(38 - a7) - (a6 + as)
i 1 ‘ : - - - (a -
{ 0 ! 0 , 0 : 1 i a9+(a8 17) (1h 13)
. 0 1 .0 1 f 0 , —a9+(a8 - 37) + (a6 - “5)
i 0 1 0 : 1 i 1 i —ag+(38 - a7) + (a6 - aS)
10 : 1 ‘ 1 ; o . 0 : —:19+(a8 + a7) - (ub + 15)
| : : : ? . DY - (s A
: 0 : 1 i 1 ; 0 1 1 ‘ —a9+(a8 + d7) (Jh - 15)
. j : : ! f —a4(, N -
i 0 1 ? 1 i 1 ; 0 a9+(d8 + a7) + (dh ds)
i 0 : 1 : 1 ; 1 : 1 —39+(38 + 37) + (uh + ”3)
! ! : ! ! ,
o 1 0 ' 0 o : O ' ag-—(n8 + :17) - (n(‘ + 'l,,))
[~ : ! i i - , - (a - \
£ 1 -0 0 ; o , 1 ag (a8 + 47) (dh ac
| ! : - (¢ + R -
i' | 1 0 0 1 1 .; 0 ag (18)7) + (1{‘ 1,))
1 :) . .
1) 1 : 0 : 0 1 1 a -(a8 + .17) + (a() boag)
4 1 : 0 : 1 ! 0 ' 0 ag—(88 - :17) - («')6 + as)
{ ! i ; ol Ay
1 ! 0 1 i 0 ; 1 a9 (38 a7) (.16 as\
: : i :
? 1 0 v 1 ; 1 : 0 ag—(d8 - n7) + (Jh - ag
. [} .
Peg i i ! ; - - . .
&; 1 : 0 1 : 1 41 aqg (.’18 (17) + (dh + .lhl)
i; 1 i1 0 1o .0 agH(ag = a)) = (a +a.)
v, : § ;

AND

MEMORY

ADDRESS [N

16 values requirced

on by

T

¢hango

Sign

PR

TABLE 9. ""B" PARTIAL PRODUCT MEMORY CONTENTS AND ATDRESSING (CONTD.)

ADDRESS

7
8m | b7m

"B PARTIAL PRODUCT MEMORY

a;) - (a,

+ (a6
+ (a6

(at6

(a6

Sign change only

(a6

(a6

4-5 Mechanization of the Modified Algorithm

The PIPE consists of six basic sections: the coefficient input section,
the partial-product memory section, the data input section, the arithmetic
section, the output section, and the timing and control section.

4.5.1 Coefficient Input Section

The coefficients (the a's) of the defining equations of the PIPE are
each 8-bit signed fractional numbers such that -1<a<l, the maximum value
of which is 1-2'7. The partial-products (partial-product-memory content)
for y, is from the set of numbers A0 through A7, the largest of whose
values can be as great as 4(1-2'7). Similarly, the partial-products for Yoo

from the set of numbers B0 through B]S’ can have values as great as

1 7 ,,-8 ,,-10

5(1-277) = 221-271 =272 _277 4278 42710

an 11-bit number. We shall now examine the procedures by which these
numbers are generated.

The coefficient-input section is functionally diagrammed in Figure 17.
There are 9 8-bit wide, parallel registers, designated a, through aq into
which the coefficients are loaded. Their inputs are wired in parallel to

a common 8-bit coefficient-input bus. When the "read input" line is true,
the number which is present on the 8-bit coefficient bus is loaded into the
input register which was identifie , the pattern on the "input-address”
lines. The loading of these coefficients is completely independent of the
functioning of the arithmetic section of the PIPE. However, after all the
coefficients which are to be loaded into the PIPE have been loaded (by the
procedure which was described above) then the PIPE is asked to "digest"
these values. When the "load memo-v" input is true, a sequence of events
js initiated which is indicated in the timing diagram of Figure 18. First,
coefficient registers 2, through a, parallel-load the shift registers 1
through 4. The outputs of the shift registers are clocked through comple-
menters to generate the negative of the numbers. Each compliementer

40

y

SA3ppy pue S433sib6ay-u0}323g Jndu] JuaLd13480) /| dunblg

S e —
LARERF 7 ST PO

oy

aakiia,.

E

|
I
a 3
2
>
~
>
Q
=)
m
b
-
-3
m
m
|]
(N B
—
<
1NdiN0
LIGIHNI
w -~
. 9
qus vus £us zus L uS
e SS340QV
Y 1NN
I0MLNCO
6 | 8¢ ve | te ge | 9% Ze | s te avo fe >cw:<w_.‘_.
44300
' \ﬂ . 1N4NI
s i i i el {C ek \W\A X (% avad
[
ya Nt
78 44300 2

weaberq bujwyr] 3ndu] JusLdL}4907 gl 94nbL4

AQv3d

f AHOW3N 8
OLNI SH43QaQV 40 138
ade WOoH4d 1nd1no

SHILIN3INWITJWOO
WOY4d 1Nd1No

SH3I1S1934 LIIHS 40
1n0 @3x201) be-Se

sH43aAav 13S3Y
'SHILSIDIY 13IHS
OLNI e-Se gv01

SH3AQQAQv 40 138
GNZ WOH4d 1Nd1NOo

—.I sH3Qaav 40 13S

1SL WOYHd 1nd1NO

SHILN3IWITJWNOO
WOH4 1Nd1NO '

_|
e v Y] e
LI
LI~

avadds NoIs

42

|
]]cw‘
1

F.

sy3aav 13s3y b
‘SHILSI93Y 14IHS
o.iNi Ye-le gvon

3$7Nd avol

~ |vejoc|6z|ez]cz|oz|sz|ve|ez|2z |1z |0z|6L|8L]cL| 91|t pileL]zi]uios |6 [8 [[9]s]¥ [e]z]L]o] S3WIL %0010

. - N 4 . - Tva.v * :
- - -— v - i - . : ,] .‘.w. .. ir = r‘.‘? g}"&.;’ Ly e

AT

ey

-

consists cf an inverter followed by a single-input serial adder with a
"1" preset in its carry flip flop. The 4 streams of serial data from

the 4 complementers pass through the adder tree to generate -A0 through
-A7. The last bit of the serial data is held at the output of each shift
register for 3 additional clock periods in order to spread the sign and to
drive the adder tree by 11-bit long data streams. This is a necessary
step to ensure sign correction. By forming negative values rather than
positive values, we can avoid some carry propagation problems later.
Immediately after the formation of -A0 through -A7, registers ag through
ag then parallel load shift registers 1 through 5 and the process which
was described to generate -A0 through —A7, is repeated in order to
generate -B0 through '815’ but using 5 data streams rather than 4.

While the PIPE is loading its coefficients as described above, the out-
put from the arithmetic section is not valid, therefore, the output
register (which is discussed in section 4.5.5) is forced to a RESET state.
After the coefficient digestion has occurred, the coefficient load-control
logic pauses until the output from the arithmetic section is again valid.
At that time the output register is restored to normal operation.

4.5.2 Partial-Product-Memory Section

The organization of the memory section is shown in Figure 19.
Eight serial data streams, —Ao through -A7. are serially clocked from
the adder tree into partial-product memory A, thereby loading the upper
half of Table 8 into the memory. Each of these values, -A0 through -A7,
although loaded serially, will be read out in parallel onto a tristate bus
which feeds the input register of arithmetic-section A (which is discussed
below). The addressing means for reading out these coefficients is also
discussed below.

Similarly, sixteen data streams, -Bo through -815, are serially clocked
from the adder tree into partial product memory B, thereby loading the
upper half of Table 9 into the memory. Again, each of these values will

be read out in parallel onto a tristate bus which feeds the input register
of arithmetic section B.

43

(02914 339)
inoaviy
1371VHVYd HO4
a3assivaav
SNOILVYI01
AHOW3IW

8 43151934 1NdNI OL

uoLjeziuebup Adowsy ‘6| d4nbLy

AYOW3W INIIJI44302

Vv H31SI1934 1NdNI

1N0av3ay 1311vyvd 01 1n0Aav3Y 13711VYvVd
L \»\ L ;»\
- $3SSNE 3LViSIYL -
r 3
Slg-
vlg- e
Elg-
tlg- |e
g |e
Olg- |le&
. (L1914 33S)
%a bl asavon
8- & | aAmviuas
y . SNOILVI01 Ly- A
& I | 7 Adowaw (v-_ ¢
98- e - |e
e 070z | o e
vg- e 1311vHVd HO4 Yy- {
ta- a3ss3yaayv e
o oy NOILVI01 v-_ ¢
’g- |e AHOWIW ly- e
lg- e lv- &
. Oml P f O(l g

S1ig Ll 1v SQHOM 9L
89 AHOW3W IN3ID144300

Silg Ll 1vSQuOms
YV AHOW3W LN3ID144300

(LLO1d)
a3avol
A1IVIH3S
NOILVIOT
AHOW3IW

44

The lower-half of Table 8 or 9 is effectively read into the arithmetic
section by complementing its opposite-signed counterpart, e.qg., +A0 is
entered by reading -A0 from the memory, inverting each bit, and adding
“1" through the carry input of the arithmetic section. This will be
discussed later in greater detail.

4.5.3 Data Input Section

The data input section of Figure 20 performs three functions.
The first function is the loading of the input data words into the
appropriate shift registers, sometimes directly, and sometimes via the

companion parallel register. In control state 0, no inputs are accepted.
In control state 1, 9 parallel input words are accepted in succession.
Switches SW! and SW2 are closed and the load-mode-select logic provides

a "read" signal to the parallel registers, 1 through 9, in succession.

In control state 2 the switches SW1 and SW2 are open. The load-mode-
select logic provides a "read" signal to parallel registers 1, 4 and 7
simultaneously; then to parallel registers 2, 5 and 8 simultaneously;

then to parallel registers 3, 6, and 9 simultanecusly. In control state 3
switches 1, 2, 5 and 8 are open, switches 3, 4, 6, 7, 9 and 10 are closed.
After parallel loading registers 1, 4 and 7, the data are shifted. The
data which are loaded into register 1 flows sequentially through shift
registers 1, 2 and 3; the data which are loaded into register 4 flows
sequentially through shift registers 4, 5 and 6; the data which are loaded
into register 7 flows sequentially through shift registers 7, 8 and 9.

In control state 4, switches 1 and 2 are open while all other switches

are closed. After the input is parallel loaded into register 1, it is
permitted to flow sequentially through all 9 shift registers. In control
state 5, serial input data flow in through the S1 port. Switches 1 and 2
remain open, switches 3 through 10 remain closed, and the data freely

flow through shift registers 1 through 9 and out through the SO port.

45

.-ge——- o .

uol329§ 3ndul e3eq ‘gz a4nbiyg

{ANJLNGC DNINIVHI} 08

S83151038
4(.(wﬂ.§.—4<1(&

1 :
H _tﬁ e
' - i

e
! T T ,Tri‘ SSNB LNdNT
N T s ot ot cn ahh an ek S R SRih e snad
! L
- ?fL!» +o—
. —— - z%lltilb R
i
i , Do
Lz 913 338 ﬂ o ’ X 8 Ms [T
8. HO1DVuigns | 1OVHiENS < - f :) I o
/M30QV OL | B Co- R
S1081NCO aqv < uA S Ol\. N R o " !
L S il
*> :
s w2t 2z |
ag,. *C & o
61 D1 338 éﬁv e wee 5 o o v
SSIHOQY 4 ¥ 4300030 -1
aviw.a. 47 Jeiso1n0. q) B R e o
AHOWIN AQ : : —— P o
" [lv‘rtlllololll,l
A "} sSN8 1NN
. — -
Y — A e
W $ oA e b
SYI1S1D3Y ISR and + ot
e s ,, i :
131 1vivd \
f s s :
. — +-—== |
—— | | |
- - ———— 7 I
12 914 339 - ! , |
.¥.. 4OLOVH1ENS *»u«fmam + - — IQA e R . . . ' f
'S¥3A0V 01 nA I wig . o
ST0HINGD aov <]B\ U wzg E] h :
- s [
: , R b :
G (e R
61 04 335 +t '
ss3uaav 9, | uigooig ‘..a
avas v. * 71 es01001 HA _ . —
AHOWINY . DA | TL\M\ llr..Ll‘i SSNB LNAN!
A i -
Ca: !
-t — e o
I PEIILED] e
111438131 1vHVd
|
€ FRERE] }
JOMINGD -—F] IGOW ,
avol s
| X
0, {ANdN) ONINIVHD! 1S
- . .
_ N . o
e

46

In control state 6, the data are serially loaded into all 9 shift registers
simultaneously. The input to the first shift register is through port SI.
The second through ninth shift registers are loaded via the 8-bit bus and
switches 3 through 10 as shown in Figure 20. In control state 7, three
serial data words are loaded. The first data word is passed sequentially
through the first three shift registers via input port SI and switches 3

and 4. The second word is passed sequentially through the second three
shift register via switches 5, 6 and 7, and the third data word is similarly
passed through the last three registers via switches 8, 9 and 10.

The purpose of the outputs of the registers is described in Tables 8 and 9.
The outputs of the first 4 shift registers drive a 1-of-out-of 8 decoder.
Forming the EXOR of b4m with each of b1m’ b2m and b3m effectively folds the
lower half of Table 8 onto the upper half; similarly the outputs of the last
5 shift registers drive a 1-out-of-16 decoder. Forming the EXOR of b9m with
each of b5m b6m’ b7m’ and b8m effectively folds the lower half of Table 9

onto the upper half. The outputs of the 4th and 9th shift registers also control
the add/subtract functions of parallel adders, A and B respectively. By this

means the adders select the appropriately signed inputs.

4.5.4 Arithmetic Section
Now we'll examine the arithmetic section which is composed of two adder/

subtracter sections.

Refer to Figure 21. MUX1 of the "A" adder/subtracter accepts -A0 through —A7
which are the partial-product inputs from partial-product memory A, and selects

the appropriately signed inputs. The 11-bit input is converted to a 12-bit

input by sign spreading; i.e., the 11th and 12th bits are strapped together.

MUX 2 selects either the initial condition from the initial-condition register

or the previous result divided by 2. The LSB of the previous sum is gated into

a carry generator, so no accuracy is lost. Similarly, MUX 1 of the "B" adder/
subtracter accepts inputs -Bo through -815, which are the inputs from partial-
product memory B, and selects the appropriately signed inputs; MUX 2 of the "B"
adder/subtracter selects the initial condition of the previous result divided by 2.

47

043995 3INAINQ pue I(IBWYILAY ddtd 1z d4nbLd

1Nd1NO0 ILVISIHL 13534 S8SWQV3Y

o 7

| waisioan 1naino nigol ‘

o) s8s1 avad \ l_

AN 7
oL, W ol
1383y

[ws) waisioaw es1 ues —!83 L HILSIOIY aSW :mi

J
04

L, LL,

7 —7
1 |
2 0
ﬁ HILS193H AV1IA HIMOT _ M — H3IL1SID3Y AV13G YIMOT H <
ur tu
8s1 4 T as1 12
-
o) 8. 430AV 1311VHVd 1182l , '9f ..v.. 4300V 131TVHYd Lig2L
> AN >
©) (+) ﬁ\hww 43 4 F4%
, INNY). (on (+ L, (NNY) o (+) N ()
i’ P ﬁl . , o
0-® © M©) @-©® W
Z XNW
i
L
1
_ HI1SID3IH AvV13A HIddN _ ﬁ HILSIOIH AV13Q HIddN _
4
H H3LSI93Y LNdNI Lig-LL _ —\ H31S193H 1NdN1 LI8-LL _
:\ﬂ :»
8., AHOWIW Y. AHOWIW
19NA0Yd 1VILHVd WOH 10NA0Yd 1VI18Vd WOHA

A . v N . .
Bt e, : ’ L e e g] L dey e i.'..\-\- .,-r\o;‘. id P

Since the values which are stored in the partial-product memories are -A0
through -A7 and -B0 through -B]S, when the negative value is required, the
memory content is simply gated directly through MUX 1. When the positive
value is required, the memory content is inverted by complementing all bits,
and a "1" is added through the carry input to the parallel adder.

After 2y] and 2y2 are formed, the final result is obtained by gating 1/2(2y])
through MUX 1 and 1/2(2y2) through MUX 2 of the "B" adder/subtracter. The
final carry is provided by the carry generator which sums the LSB's from '
both Zy] and 2y2. The final most-significant 10-bit part of y is then gated
into a holding register. The remaining 10 Teast-significant bits of the full-
precision answer arealso available. Lets see why we're interested in so many f
bits since we are permitting the word length of the input data word and of the
coefficient to be each only 8 bits, including sign.

The product of a pair of 2's complement 8-bit numbers is 15 bits in length. The
sum of 5 15-bit numbers is 14 + 10925 = 18 bits in length; the sum of 9 15-bit
numbers is 15 + 10929 = 19 bits in length.

If we consider the input data words (the xn) as fractions, their format will be
the same as the format of the input coefficients. The value of yq can be as great
as 22-(1-2'7)2; the value of Y, can be as great as (I+22)-(1-27)2. Since the
values which are actually formed by the adders are Zy] and 2y2, their maximum

values in binary format are

i

Zy] max OX 0111.11100000001700

2y2 max Ox 1001.1101100000101

S —
4-bit
___] integer -
Sign N
| e—— value formed in S
Tower delay register \\\\\\

*4*sum gated

out to carry
generator

During the formation of y = 1/2(2y] + 2y2) < (1-2'7)2 we have the most
significant 11 bits of y in the MSB register with a redundant sign bit
for a total of 12 bits. The 2 LSB's are combined with the 8-bit carry-
generator result. The answer is provided as a pair of 10-bit words, the
10 MSB's and the 10 LSB's.

The carry generator is a simple 3-input serial adder with the usual sum
and carry outputs. During each of the 8 computational cycles each
parallel adder sends the least-significant bit of its output to the carry
generator. The carry generator in turn sends its "sum out” to an 8-bit
shift register. The contents of the shift register are placed in the 8
.SB Tocations of the 10-bit output register. The other 2 bits which go
into this register are the 2 LSB's of the MSB half of y. While the carry
generator is providing its 8th "sum out" value, it is also providing a
carry input to parallel adder B which is forming its final answer y = 1/2
(2y1 + 2y2). A computing sequence is diagrammed in Figure 22.

4.,5.5 Qutput Section

The output section which is also shown in Figure 21 consists of a 10-bit

output register which drives a tristate bus, a 10-bit MSB register, a 10-bit
LSB register, and the associated control and switching functions. The 10

LSB's are derived from two sources: the 8 LSB's are clocked from the carry
generator into the 8-bit LSB serial/parallel register and held; this is augmented
by another pair of bits which are the 2 LSB's from the final output of the adder
B. This 10-bit result is then placed automatically into the output register.
The 10 MSB's may be read into the output register by making the READ MSB line
true. At any time, the output register may be cleared and the tristate bus
allowed to float by making the RESET line true. The MSB's will not be read
except upon command, but once every computational cycle the LSB's are read.
Reading of the LSB's can be inhibited by holding the RESET line true.

INITIAL CONDITION X X X X X X X X X X
L‘ ! FIRST PARTIAL PRODUCT X X X X X X X X X X X
. [F PARTIAL PRODUCT + (CARRY IN) (x)
FIRST PARTIAL SUM X X X X X X X X X XX
' SECOND PARTIAL PRODUCT X X X X X X X X X X X
I¥ PARTTAL PRODUCT + (x)
! SECOND PARTIAL SUM X X X X XX XX XXX X
THIRD PARTIAL PRODUCT X X X X X XX X X X X
IF PARTIAL PRODUCT + (x)
THIRD PARTIAL SUM X X X X X XXX X X X X
FOURTH PARTIAL PRODUCT X X X X X X XX XX X
IF PARTIAL PRODUCT + (x)
FOURTH PARTIAL SUM X X X X X X XX XX X X
FIF'Y PARTIAL PRODUCT X X X X X X X X X X X
I¥ PARTTAL PRODUCT + (x)
FIFTH PARTIAL SUM X X X X X XXX XXX X
SIXTH PARTIAL PRODUCT X X X XXX XXX XX
IF PARTIAL PRODUCT + (x)
SIXTH PARTIAL SUM X X X X X XXX XXXX
SEVENTH PARTIAL PRODUCT X XX XX XXXXXX
IF PARTIAL PRODUCT + {x)
SEVENTH PARTIAL SUM X X X X X X XXX XXX
EIGHTH PARTIAL PRODUCT X X X X XXX XXXX
IF PARTIAL PRODUCT + (x)
SUMY] MSB's xxxxxxxxxxx)'(’
LSB's TO CARRY GEN. X X X X X XX X
sum y., LSB's TO CARRY GEU. X X X X XX XX
MSB's X X X XXX XX XXX
CARRY FROM CARRY GEN. X
SUM Y MSB's X X X X X X X X XX XX
LSB's FROM SHIFT REG. X X X X X X X X
MSB's L8B's
OUTPUT D ouTPUT T+

Figure 22. Computing Sequence
51

e

A forced RESET occurs when a new set of coefficients is being digested. This
RESET will be held until the output of the arithmetic section is again valid.

4.5.6 Timing and Control Section

Figure 23 shows the timing of all the arithmetic operations. The
timing requirements are extremely simple. Simple delay, invert, and NAND
operations on the input-word-timing pulse can provide all necessary internal
timing signals for the arithmetic section as shown in Figure 24.

4,5.7 Overall Chip Structure

Figure 25 illustrates the entire chip and the relationship between the
various parts which were described above. The complete set of logic diagrams
which were developed is in the Appendix.

4.5.8 Using Multiple Devices for High Accuracy
The high-accuracy computation mode can be understood by considering
a set of 15-bit inputs which can be expressed as the following

14 7 7
_ -m _ -m -m, -7
Xy = =bo * I b 2" = [-bno +I 271 + [0+ mil brm+7 27 2

b
m=1 m=1 M

+ X 2’7

XMn Ln
where XM are the most significant bits of Xn and X\, are the least significant

7

bits. We can similarly express the coefficients a, = ay + aLnZ' so the sum

of the products can be written as

9 9 7 7
y =n£1 4 *n _n£1 (aMn ta,?)(an t X2)
9 9 9 -7 9 2_]4
I a, X, *t[I a . X, +Z a, x 12"+ [L &, %]
n=1 M0 “Mn p=1 LMo 2y M e p=1] Lth Ln

In order to perform multiplication with an input accuracy of 15 bits and an out-

put accuracy of 33 bits requires a set of four PIPE devices plus three external
adders.

- B S e e e e — e e

Iy T T I N TP L CIPE ™ G, SR

i

U0L323§ 3:73uy3Ltay 404 weubeiq butwy) ‘gz aunbiy

|
|

- D34 @SW OLNI AIOVOT S.85W
All_ ‘934 LNINO OINI GIOVOT $.857

4OAVHINID
AHHVD 01 ..1N0 AHYVYD..
WOU4 8 H3QAY OL ..N) AHYVYD.,

TVWHON YO1VH3INID
AHHVI WOU4 ..1NO AHYVD..
GNV 8 H30QY 0L ..NI A¥YY)D..

~NNY.. NI & ¥300V 'Z XNW

SHIALSIO3Y 1NN WOKH4 Yiva
3A13D34 8 ONV V SH3I00V 'L XNW

Vv 430Qv WON4 viva
$3AI13034 '8 ¥W3I0AV IXNW

~NNY.. NI
'V H30QV ‘2 XN

21 avol O
'SH3AAY H108 ‘T XNW

L
M
'
gl
1
[L
1
J 1]
1
L]
T

53

8 GNV ¥ SH3gav
30 SHILS1D3Y LNdNL OLNI 03AVOT
SINILINOD AMOWIN LONCOYL IVILEYA

SHIISIOIY AVIIQ YIddN
OLNI SNOLLIGNOD TV LING

8 ONV V SH3QQV 40 SHI1SIHIY LNdNI
OLNI SNOLLIGNOD 1VILINI

SH3IA0I3Q AHOWIW LONA0H4 IViLYVA OLNI
SY31SI93 40 LNO QINDO01) Viva

SH3LSID3Y L4IMS viVa
ANdNI V01131V Ve

3WIL Y LV SQHOM
€ dIHD OLNO V1ivad avol

QHOM AS QHOM ‘dIHI OLNO
V1va V01 A1IVIIN3ND3S
0 3579

ONINIL NUOM LNJNI

:AN?ﬂoﬁ.::::ﬁmq~qp‘iinqimﬁln:MLo:ﬂQi:lnmﬂ«v:i Q0I¥3d 201D

S W —

403€43u3Y |043u0) pue Bulwll BIRQ pue D133WY3 LY pZ Bunbyy

Qo0id3d
plolonio B

JOHLNOD d3033aN)
TV S3LVHIN3IO

LAIF

AA(A

o ONIWIL
L LNdNI
<t
[Te]
"
IWILY LV L -0
' | 3WILYLVE- L
9 :300W
- ? '8 avo1viva
f% { 1
8] v € 14 i 6
(v J
.478¥N3 AVO1.. VAVA LNdN
- - . - Ve et T W mg L SR am o T
L vl M o I A

i
4
m.,
[
:
|
‘

3

b e Il—ll
oL

uotjeziuebuag diy)y adid Gz a4nbiy

>

I
0 — %070 #— 1novivaviuzs
2 L/ _ annous . d/ NI VivVQ V183s
l h.v\l H3IMOd 19313s 3aon
—_————])———— = —_————1r — =
., =
(T aNv)
ozoaas) | | g
€2 91d) 4300030 NV [&—/— SifdNl
104.INCI OGNV viva
sassavaay ETBEL s
ONIWIL QL _ /
y | |
(Zon) 47 (61 914 338) oL (L1914 338) | ¢ SLNdNI
NOILO3S gaNvVv |e—/—] suilaavany |fe—— 1IN310144300
OILIWHLINY L AHOWIW | wg'wy SH31S193Y _ Les
T ¥ i Lo
AHOW3W v
avor (8 L9514 33S) SS34AAV 1NdNI
(LZ 914) noioasinam | | P
NOILO3S < AN310144300
1nd1no 1Nd1NO LIgIHNI HO4 TOHINOCO |
ANV ONIWIL Y AHOW3IW avol

I

55

APPENDIX

LOGIC DESIGN AND LAYOUT

v

SuTUOTITIIRd 3ITNDOAT) paleaBaIU] YdIJ 97 Indry

A
“
—
N
~< >
i 1] W
S 3k
® 70 | ZSTTW 0ZSS
W STIW ¢g v06Z = XZ
2 260T = XI
o WALSTOT VIV
001 |
! - sSTw gg —————— ,_
ZSTTW 6905 ‘ !
YA y
O - -
w 992 X<¢ _"
= 89T = XI w “
| m 4 ~
STHI 80z ﬂ - KUONEIN ! o
fe—— sTru gg——> ;
m
K i
STTW §///
_> SIHH 88 Nommq = X2
| ,STIW $557 o
st L =X WIAAV TVIYIS
0s v0L = XT ANV YLISTOTY
! V- AOWEDN INATDT 470D
1 s7ru g > STTU g8
Y ‘
]
; i
i i
|
- STTW ¢§7 e

-

Y. o

e

..?“

CAOO-OZ)ﬂ ﬂ IC1-8
COEFFICIENT
REGISTER AND
SERTAL ADDER
SABO-7 SAC 00-15
=
DATA A 01-08
)) DRAD B 00-15 o | Mory
]) B
DATA B 01-08 > E J_L
2 p . a
<2 |DpRapaoo-7 | MEORY
= 3 1) @]
DATA C 01-08
b
) X11 X11
0
PARALLEL PARALLEL
ADDER ADDER
Figure 27. PIPE Integrated Circuit Block Diagram

58

bga

R i . R

-

\

. o TTE d . .
e %% -Tedow T~ W e ST et ke o

REFERENCES

J.M.S. Prewitt, "Object Enhancement and Extraction," Picture
Processing and Psychopictorics, B. S. Lipkin and A. Rosenfield,
editors; Academic Press, New York, 1970, pg. 126.

G. S. Robinson, "Detection and Coding of Edges Using Directional
Masks," SPIE Vol, 87, Advances in Image Transmission Techniques,
1976, pp. 117-125.

A. Peled, B. Liu, Digital Signal Processing, John Wiley & Sons,
New York, 1976, Chapt. 5.

S. A. White, On Mechanization of Vector Multiplication, Proc. IEEE,
Vol. 63, pp. 730-731, April 1975.

M. Buttner and H. W. Schussler, "On Structures for the Implementation
of Distributed Arithmetic, NTZ Communications Journal, Vol. 6, June 1975.

S. A. White, “An Adaptive Recursive Digital Filter," Proc. 9th Asilomar
Lonference on Circuits, Systems, and Computers, Pacific Grove, CA,
Nov. 1975.

T. L. Chang, "A Low Roundoff Noise Digital Filter Structure,"” Proc. IEEE
ISCAS, May 1978.

A. D. Booth, "A Signed Binary Multiplication Technique," Quarterly
Journal of Mechanics and Applied Mathematics, Vol. 4, part 2, 1951.

0. L. MacSorley, "High-Speed Arithmetic in Binary Computers," Proc. IRE,
Jan. 1961, pp. 67-91.

59

“U.5.Government Printing Office: 1981 — 757-002/572

-~ -5

